NOTES ON γ -OPEN SETS DEFINED BY γ -OPERATION ON A SUPRATOPOLOGICAL SPACE

Young Key Kim* and Won Keun Min**

ABSTRACT. In this paper, the notion of γ -operation on a supratopological space is introduced. We found that the γ -operation induces a supratopology (topology) containing a given supratopology. We also introduce the notions of (γ, S) -continuous function and almost Γ -supracompact defined by γ -operation on a supratopological space and investigate some properties for such notions.

1. Introduction and Preliminaries

Let X be a non-empty set with the power set expX. A function $\gamma: expX \to expX$ is said to be monotonic [1] iff $A \subseteq B \subseteq X$ implies $\gamma A \subseteq \gamma B$. The monotonic function γ is called an operation. If γ is an operation, then a set $A \subseteq X$ is said to be γ -open [1] if $A \subseteq \gamma A$. For $A \subseteq X$, we denote by $i_{\gamma}A$ the union of all γ -open sets contained in A, i.e. the largest γ -open set contained in A. The complement of a γ -open set is said to be γ -closed. Any intersection of γ -closed sets is γ -closed, and for $A \subseteq X$, we denote by $c_{\gamma}A$ the intersection of all γ -closed sets containing A, i.e. the smallest γ -closed set containing A. Let γ and γ' be operations, respectively. Then a function $f: X \to Y$ is said to be (γ, γ') -continuous [3] if for each γ' -open set V in Y, $f^{-1}(V)$ is γ -open in X.

We recall the notion of γ -operation introduced in [2]: Let (X, τ) be a topological space, and $\gamma : expX \to expX$ a mapping such that

- (1) $A \subseteq B \Rightarrow \gamma A \subseteq \gamma B$.
- (2) $\gamma \emptyset = \emptyset$, $\gamma X = X$.

Received April 30, 2019; Accepted March 01, 2019.

2010 Mathematics Subject Classification: 54A05, 54B10, 54C10, 54D30.

Key words and phrases: (γ,S) -continuous, Γ -supraclosed graph, strongly Γ -supraclosed graph, γ -supracompact, almost Γ -supracompact.

This study was supported by 2017 Research Grant from Kangwon National University (No. 520170500).

^{**}Corresponding author:wkmin@kangwon.ac.kr.

(3) For $A \subseteq X$ and an open set $G \subseteq X$, $G \cap \gamma A \subseteq \gamma (G \cap A)$.

The mapping γ is called an associated operation with μ on X.

In this paper, we introduce the notion of an associated operation with a supratopology S on any given nonempty set. We found that the γ -operation induces a supratopology (topology) containing a given supratopology. (See Theorem 2.5). We also study the notions of (γ, S) -continuous function, Γ -supraclosed graph, strongly Γ -supraclosed graph and almost Γ -supracompact defined by an associated γ_S -operation on a supratopological space.

THEOREM 1.1 ([1]). Let γ be an operation and $A \subseteq X$. Then the statements are hold:

(1)
$$i_{\gamma}A = X - c_{\gamma}(X - A)$$
; (2) $c_{\gamma}A = X - i_{\gamma}(X - A)$.

Let X be a nonempty set. A subclass $S \subseteq expX$ is called a supratopology [4] on X if $\emptyset, X \in S$ and S is closed under arbitrary union. (X, S) is called a supratopological space. The members of S are called supraopen sets and a set is called supraclosed if the complement is a member of S. For $A \subseteq X$, we denote by Sint(A) the union of all supraopen sets contained in A, and by Scl(A) the intersection of all γ -closed sets containing A.

2. Main Results

DEFINITION 2.1. Let (X, \mathcal{S}) be a supratopological space with a supratopology \mathcal{S} , and $\gamma : expX \to expX$ a mapping such that

- $(1) A \subseteq B \Rightarrow \gamma A \subseteq \gamma B.$
- (2) $\gamma \emptyset = \emptyset$, $\gamma X = X$.
- (3) For $A \subseteq X$ and any supraopen set $G \subseteq X$, $G \cap \gamma A \subseteq \gamma (G \cap A)$.

We call the mapping γ an associated operation with a supratopology S on X. We will denote an associated operation γ with S by γ_s (simply γ).

THEOREM 2.2. Let (X, S) be a supratopological space and γ an associated operation with S. Then every supraopen set is γ -open.

Proof. Let
$$G$$
 be supraopen in X . Then from (2) of Definition 2.1, $G = G \cap \gamma X \subseteq \gamma(G \cap X) \subseteq \gamma G$. Thus G is γ -open.

THEOREM 2.3. Let (X, S) be a supratopological space and γ an associated operation with S. Then the intersection of a supraopen set and a γ -open set is γ -open.

Proof. Let G and H be a supraopen set and a γ -open set, respectively. Then $G \cap H \subseteq G \cap \gamma H \subseteq \gamma(G \cap H)$. Thus $G \cap H$ is γ -open. \square

In general, the intersection of two γ -open sets is not γ -open as shown in the next example.

Example 2.4. For $X = \{a, b, c\}$, let $S = \{\emptyset, \{a, b\}, \{b, c\}, X\}$ be a supratopology. Consider a mapping $\gamma : expX \to expX$ such as $\gamma(A) = Scl(Sint(A))$ for $A \subseteq X$. Then obviously, γ is an operation. Take two γ -open sets $A = \{a, b\}$ and $B = \{b, c\}$. For $A \cap B = \{c\}$, since $\gamma(A \cap B) = Scl(Sint(A \cap B)) = Scl(Sint(\{c\})) = \emptyset$, $A \cap B$ is not γ -open.

From the above facts, we have the next result:

THEOREM 2.5. Let (X, \mathcal{S}) be a supratopological space and γ an associated operation with \mathcal{S} . Then

- (1) the set of all γ -open sets is a supratopology containing S;
- (2) if for $A \subseteq X$ and any γ -open set $G \subseteq X$, $G \cap \gamma A \subseteq \gamma (G \cap A)$, then the set of all γ -open sets is a topology.
- *Proof.* (1) Let H_i be any γ -open set for each $i \in J$. Then from (1) of Definition 2.1, $H_i \subseteq \gamma(H_i) \subseteq \gamma(\cup H_i)$. Thus $\cup H_i$ is γ -open. By Theorem 2.2, then the set of all γ -open sets is a supratopology containing \mathcal{S} .
- (2) Let A and B be γ -open sets. Then $A \cap B \subseteq A \cap \gamma B \subseteq \gamma (A \cap B)$. So, $A \cap B$ is a γ -open set. Finally, from (1), the set of all γ -open sets is a topology containing \mathcal{S} .

DEFINITION 2.6. Let (X, μ) and (Y, ν) be supratopological spaces and γ an associated operation with μ . Then a function $f: (X, \mu) \to (Y, \nu)$ is (γ, S) -continuous if for every supraopen set F in Y, $f^{-1}(F)$ is γ -open in X.

THEOREM 2.7. Let $f:(X,\mu) \to (Y,\nu)$ be a function on supratopological spaces and γ an associated operation with μ . Then f is (γ, S) -continuous iff for each $x \in X$ and each supraopen set V containing f(x), there exists a γ -open set U containing x such that $f(U) \subseteq V$.

Proof. Suppose that f is (γ, S) -continuous. Then for each $x \in X$ and each supraopen set V containing f(x), $f^{-1}(V)$ is γ -open. Set $U = f^{-1}(V)$. Then the γ -open U satisfies that $x \in U$ and $f(U) \subseteq V$.

For the converse, let V be a supraopen set in Y. Then for each $x \in f^{-1}(V)$, there exists a γ -open set U_x such that $x \in U_x \subseteq f^{-1}(V)$. So $f^{-1}(V) = \bigcup U_x$ and by Theorem 2.5, it is γ -open.

THEOREM 2.8. Let $f:(X,\mu) \to (Y,\nu)$ be a function on supratopological spaces and γ an associated operation with μ . Then a function f is (γ, S) -continuous iff $f^{-1}(Sint(B)) \subseteq \gamma f^{-1}(B)$ for $B \subseteq Y$.

Proof. Let f be (γ, S) -continuous and $B \subseteq Y$. Since $f^{-1}(Sint(B))$ is γ -open and γ is monotonic,

$$f^{-1}(Sint(B)) \subseteq \gamma f^{-1}(Sint(B)) \subseteq \gamma f^{-1}(B).$$

For the converse, let B be a supraopen set in Y. Then $f^{-1}(B) = f^{-1}(Sint(B)) \subseteq \gamma f^{-1}(B)$. So, $f^{-1}(B)$ is γ -open in X.

THEOREM 2.9. Let $f:(X,\mu) \to (Y,\nu)$ be a function on supratopological spaces and γ an associated operation with μ . Then the following are equivalent:

- (1) f is (γ, S) -continuous.
- (2) $f^{-1}(Sint(B)) \subseteq i_{\gamma}f^{-1}(B)$ for $B \subseteq Y$.
- (3) $c_{\gamma}f^{-1}(B) \subseteq f^{-1}(Scl(B))$ for $B \subseteq Y$.
- (4) $f(c_{\gamma}A) \subseteq Scl(f(A))$ for $A \subseteq X$.

Proof. Straightforward.

Let (X, μ) be a supratopological space and γ an associated operation with μ . Then X is called γ - T_2 (respectively, ST_2 [4]) if for every two distinct points x and y in X, there exist two γ -open sets (respectively, supraopen sets) U and V containing x and y, respectively, such that $U \cap V = \emptyset$.

DEFINITION 2.10. Let (X, μ) and (Y, ν) be supratopological spaces and γ an associated operation with μ . A function $f: X \to Y$ has a γ -supraclosed graph (resp. strongly γ -supraclosed graph) if for each $(x,y) \in (X \times Y) - G(f)$, there exist a γ -open set U and a supraopen set V containing x and y, respectively, such that $(U \times V) \cap G(f) = \emptyset$ (resp. $(U \times Scl(V)) \cap G(f) = \emptyset$), where $G(f) = \{(x, f(x)) : x \in X\}$.

LEMMA 2.11. Let (X,μ) and (Y,ν) be supratopological spaces and γ an associated operation with μ . A function $f:X\to Y$ has a γ -supraclosed graph (resp. strongly γ -supraclosed graph) if for each $(x,y)\notin G(f)$, there exist a γ -open set U and a supraopen set V containing x and y, respectively, such that $f(U)\cap V=\emptyset$ (resp. $f(U)\cap Scl(V)=\emptyset$).

Proof. Obvious.
$$\Box$$

THEOREM 2.12. Let (X, μ) and (Y, ν) be supratopological spaces and γ an associated operation with μ . If $f: X \to Y$ is (γ, S) -continuous and Y is a ST_2 space, then f has a strongly γ -supraclosed graph.

Proof. Let $x, y \in (X \times Y) - G(f)$. Then $y \neq f(x)$, and there exist two supraopen sets U and V such that $f(x) \in U$, $y \in V$ and $U \cap V = \emptyset$. It implies that $U \cap Scl(V) = \emptyset$. Since f is (γ, S) -continuous, by Theorem 2.7, there exists a γ -open set W of x such that $f(W) \subseteq U$. So $f(W) \cap Scl(V) = \emptyset$. Thus by Lemma 2.11, f has a strongly γ -supraclosed graph. \square

THEOREM 2.13. Let (X, μ) and (Y, ν) be supratopological spaces and γ an associated operation with μ . If $f: X \to Y$ is a surjective function with a strongly γ -supraclosed graph, then Y is ST_2 -space.

Proof. Let y_1 and y_2 be distinct points in Y. Then there exists $x \in X$ such that $f(x) = y_1$. Since $(x, y_2) \notin G(f)$ and f has a strongly γ -supraclosed graph, there exist a γ -open set U and a supraopen set V of x and y_2 , respectively, such that $f(U) \cap Scl(V) = \emptyset$. So, $y_1 \notin Scl(V)$. Now, there exists a supraopen set G of y_1 such that $G \cap V = \emptyset$. Hence, Y is ST_2 .

THEOREM 2.14. Let (X, μ) and (Y, ν) be supratopological spaces and γ an associated operation with μ . If $f: X \to Y$ is (γ, S) -continuous injection with a γ -supraclosed graph, then X is γ - T_2 .

Proof. Let x_1 and x_2 be two distinct elements in X. Then $f(x_1) \neq f(x_2)$ and $(x_1, f(x_2)) \in (X \times Y) - G(f)$. By hypothesis, there exist a γ -open set U and a supraopen set V of x_1 and $f(x_2)$, respectively, such that $(U \times V) \cap G(f) = \emptyset$. Since f is (γ, S) -continuous, there exists a γ -open set H containing x_2 such that $f(H) \subseteq V$. It implies that $f(H) \cap f(U) = \emptyset$. So, $H \cap U = \emptyset$ and X is γ - T_2 .

Let (X, μ) be a supratopological space and γ an associated operation with μ . A collection $\mathbf{S} = \{S_i \subseteq X : S_i \text{ is } \gamma\text{-open, } i \in I\}$ is called a $\gamma\text{-open cover}$ for X if $X = \bigcup_{i \in I} S_i$. The space (X, μ) is said to be $\gamma\text{-supracompact}$ (resp., almost $\Gamma\text{-supracompact}$) if for each $\gamma\text{-open cover}$ $\mathbf{S} = \{S_i \subseteq X : S_i \text{ is } \gamma\text{-open, } i \in I\}$, there exists a finite index set $F \subseteq I$ such that $X = \bigcup_{i \in F} S_i$ (resp., $X = \bigcup_{i \in F} c_{\gamma}(S_i)$).

And we recall that a supratopological space (X, μ) is said to be almost supracompact if for each supraopen cover $\mathbf{C} = \{G_i \subseteq X : G_i \text{ is supraopen, } i \in I\}$, there exists a finite index set $F \subseteq I$ such that $X = \bigcup_{i \in F} Scl(G_i)$.

THEOREM 2.15. Let (X, μ) and (Y, ν) be supratopological spaces and γ an associated operation with μ . Let $f: X \to Y$ be a surjective (γ, S) -continuous function. If X is γ -supracompact, then Y is supracompact.

Proof. Obvious.

THEOREM 2.16. Let (X, μ) and (Y, ν) be supratopological spaces and γ an associated operation with μ . Let $f: X \to Y$ be a (γ, S) -continuous and surjective function. If X is almost Γ -supracompact, then Y is almost supracompact.

Proof. Let $S = \{S_i : i \in J\}$ be a supraopen cover of Y. Then $\{f^{-1}(S_i) : S_i \in S, i \in J\}$ is a γ -open cover of X and by almost Γ -supracompactness of X, there is a finite collection

$$\{c_{\gamma}f^{-1}(S_{j_1}), c_{\gamma}f^{-1}(S_{j_2}), \cdots, c_{\gamma}f^{-1}(S_{j_n}): S_j \in \mathcal{S}, j = j_1, j_2, \cdots, j_n\}$$
 such that $X \subseteq \cup c_{\gamma}f^{-1}(S_j)$. Then from Theorem 2.9,

$$Y = f(X) \subseteq f(\cup c_{\gamma} f^{-1}(S_j)) \subseteq \cup f(f^{-1}(Scl(S_j))) \subseteq \cup Scl(S_j).$$

Hence Y is almost supracompact.

3. Acknowledgments

The authors are thankful to the referee for his/her useful suggestions.

References

- [1] A. Császár, Generalized Open Sets, Acta. Math. Hungar. **75** (1997), no. 1-2, 65-87.
- [2] A. Császár, γ -compact Spaces, Acta. Math. Hungar. 87 (2000), no. 1-2, 99-107.
- [3] A. Császár, γ-connected Sets, Acta. Math. Hungar. 101 (2003), no. 4, 273-279.
- [4] A. S. Mashhourr, A. A. Allam, F. S. Mahmoud and F. H. Khadr, On Supratopological Spaces, Indian J. Pure Appl. Math. 14(4) (1983), 502-510.

*

Department of Mathematics MyongJi University Yongin 17058, Republic of Korea *E-mail*: ykkim@mju.ac.kr

**

Department of Mathematics Kangwon National University Chuncheon 24341, Republic of Korea *E-mail*: wkmin@kangwon.ac.kr